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For which parallelipiped A[0, 1]d ⊆ Rd exists Ψ ⊆ Zd so that {e2πiψ·x}ψ∈Ψ is an orthogonal basis for
L2(A[0, 1]d)?



d = 1

Only: {e2πiψ x}ψ∈NZ is an orthogonal basis for L2[0, 1
N ], N ∈ N.

Theorem (Seip ’95)
There exists Λ ⊆ Z with E(Λ) = {e2πiλx}λ∈Λ is a Riesz basis for L2[0, a].
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Prologue
Riesz basis (RB)

{gn}n∈Z is a RB for H if span{gn} = H and ∃A,B > 0: A
∑
n

|an|2≤
∥∥∑

n

angn
∥∥2≤B

∑
n

|an|2, ∀{an}.

Fourier series
E(Z) = {e2πinx}n∈Z is ONB for L2[0, 1] ⇒ E(Z+αa ) = {e2πi n+α

a x}n∈Z is an OB for L2[b, b + a].

Motivating observation from grad school

0 E(2Z) is OB of L2[0, 12 ] 1
2

E(2Z+ 1) is OB of L2[ 12 , 1] 1

E(Z) = E
(
(2Z+ 1) ∪̇ 2Z

)
is ONB of L2[0, 1]

0 a 1E(Λ) is RB of L2[0, a] E(Z \ Λ) is RB of L2[a, 1]
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Results

0 a1 a3a2 a4 1

Theorem A (GP, Shauna Revay, David Walnut ’24)

For 0=a0 < a1 < . . . < an=1 exists a partition Λ1,...,Λn of Z s.t. E(Λk) is a Riesz basis of L2[ak−1,ak ].

0
b1 b2 b3 b4 b5

1

Theorem B (GP, Shauna Revay, David Walnut ’24)

For b1, . . . , bn > 0 with
∑n

j=1 bj = 1 exists a partition Λ1,...,Λn of Z so that for any J ⊆ {1, . . . , n} we

have E
(⋃

j∈J Λj

)
is a Riesz basis for L2(I ) where I is an interval of length

∑
j∈J bj .
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3 tools

Kadec’s Theorem
For φ : Z+c

a → R, E
({
φ
(
k+α
a

)}
φ
)
is a Riesz basis for L2[0, a] if sup

k∈Z

∣∣∣ k+αa − φ( k+αa )
∣∣∣ < 1

4a .

Weyl Equidistribution Theorem
For α irrational it holds

lim
R→∞

1

R

R∑
k=1

k α mod 1 =
1

2

Beatty sequences

For a, b irrational with a+ b = 1, the sets A =
{⌊k

a

⌋}
k∈N

and B =
{⌊k

b

⌋}
k∈N

partition N.

Proof. There exist ⌊aN⌋ elements from A in [0,N) and ⌊bN⌋ elements from B in [0,N).
a, b /∈ Q implies

aN − 1 < ⌊aN⌋ < aN, and bN − 1 < ⌊bN⌋ < bN and in sum

N − 2 = aN − 1 + bN − 1 < ⌊aN⌋+ ⌊bN⌋ < aN + bN = N.

So both sequences together drop 1 element in [0, 2), so onto 1, an additional integer into [0, 3), so
onto 2, ...
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Proof
0 a/∈Q 1

Avdonin’s Theorem (Kadec 1
4 -Theorem for R=1)

For φ : Z+α
a → R injective with separated range, E

{
φ
(
k+α
a

)}
is a Riesz basis for L2[0, a] if for R > 0,

1

4a
> sup

m∈Z

∣∣∣∣ 1R ∑
k∈[mR,(m+1)R)

k+α
a − φ

(
k+α
a

)∣∣∣∣.
Weyl-Khinchin Equidistribution Theorem
For a irrational and ϵ > 0 exists R so that for all m ∈ Z,

ϵ >
∣∣∣ 1
R

(m+1)R−1∑
k=mR

k + 1
2

a
mod 1 − 1

2

∣∣∣

=
∣∣∣ 1
R

(m+1)R−1∑
k=mR

k + 1
2

a
−
⌊k + 1

2

a

⌋
Z

− 1

2

∣∣∣ = ∣∣∣ 1
R

(m+1)N−1∑
k=mR

k + 1
2

a
−
[k + 1

2

a

]
Z+ 1

2

∣∣∣.
Inhomogeneous Beatty sequences

For a irrational, the sets
{[k + 1

2

a

]
Z+ 1

2

}
k∈Z

and
{[ℓ+ 1

2

1−a

]
Z+ 1

2

}
ℓ∈Z

partition Z+ 1
2 .

Seip’s Theorem
There exists Λ ⊆ Z such that E(Λ) is a Riesz basis for L2[0, a], 0 < a ≤ 1.
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Seip’s Theorem
There exists Λ ⊆ Z such that E(Λ) is a Riesz basis for L2[0, a], 0 < a ≤ 1.
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0 a1 a3a2 a4 1

Theorem B implies

Z partitions into Λ1,...,Λn with E(
ℓ⋃

r=k

Λr ) is a Riesz basis of L2[ak−1,aℓ] = L2
[ ℓ⋃
r=k

[ak−1,ak ]
]
for all k , ℓ.

0 a1 a3a2 a4 1

Definition
A family of Riesz bases E(Λj) of L

2(Sj) is called hierarchical if

E(
⋃
j∈J

Λj) is a Riesz basis of L2
[⋃
j∈J

[aj−1,aj ]
]
for all J ⊆ {1, . . . , n}.

Theorem (Kozman, Nitzan 2015)
For any finite union of intervals S ⊆ [0, 1] exists Λ ⊂ Z such that E (Λ) is a Riesz basis for L2(S).
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Theorem (Caragea, Lee, 2022)

If c1, d1, . . . , cn, dn are linearly independent over Q, then exist Λ1,...,Λn ⊆ Z with E(
⋃
j∈J

Λj) is Riesz of

L2
[⋃
j∈J

[aj−1,aj ]
]
for all J ⊆ {1, . . . , n}.

.

Theorem (Caragea, Lee, Malikiosis, GP)
Let N = pq for p, q distinct primes, q ≤ 7, and c1, d1, . . . , cn, dn ∈ {0, 1

N , . . . ,
N−1
N , 1}, then the

conclusion above holds.
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Proof idea of the rational result

For N ∈ N set

FN =
(
e2πi

kℓ
N
)
0≤k,ℓ≤N−1

=
(
ωkℓ

)
0≤k,ℓ≤N−1

, ω = e−2πi
1
N

For K , L ⊂ {0, 1, . . . ,N − 1} of equal cardinality

FN [K , L] =
(
ωkℓ

)
k∈K ,ℓ∈L

.

Chebotarëv’s theorem (1920s)
If N is prime, then, for any K , L of equal cardinality, detFN [K , L] ̸= 0.
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N not prime

F4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 hence detF4 [{0, 2}, {0, 2}] = 0

F6 =


1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 1 ω2 ω4

1 ω3 1 ω3 1 ω3

1 ω4 ω2 1 ω4 ω2

1 ω5 ω4 ω3 ω2 ω

 hence detF6 [{0, 2}, {0, 3}] = 0

Conjectures

▶ If N is square-free, then all principal minors of FN are non-zero. (Cabrelli, Molter, Negreira;
Caragea, Lee, Malikiosis, GP)

▶ If N contains no fourth power, then exists a permutation σ so that detFN [K , σ(K )] ̸= 0 for all K .
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Testing the conjecture

Square-free case

▶ Numerical and symbolical testing for small N (up to 45).

▶ Conjecture confirmed for square free 2p, 3p, 5p, 6p, 7p and qp for q > Γp which is large.
(Loukaki; Caragea,Lee, Malikiosis, GP; Emmerich, Kunis)

▶ Smallest open cases 11 · 13 = 143, 2 · 5 · 7 = 70, 2 · 3 · 5 · 7 = 210.

Non square-free case

▶ Initial numerical and symbolical testing for small N.

▶ No ’good’ permutations seem to exist for N = 16 = 24.

▶ Next interesting case 34 = 81.



Back to hierarchical Riesz bases

0

6Z+ σ(0)

1/6

6Z+ σ(1)

2/6

6Z+ σ(2)

3/6

6Z+ σ(3)

4/6

6Z+ σ(4)

5/6

6Z+ σ(5)

1

If detFN [K , σ(K )] ̸= 0 for all K then the family of Riesz bases E(NZ+ σ(k)) of L2([ kN ,
k+1
N ] is

hierarchical.

Recall: σ=identity works for square free 2p, 3p, 5p, 6p, 7p and qp for q > Γp which is large. (Loukaki;
Caragea,Lee, Malikiosis, GP; Emmerich, Kunis)



d = 2



Generalizations d = 2



d ≥ 2



Cube tilings

Question
For which full rank A exists Φ ⊆ Zdwith E(Φ) is orthogonal basis for L2(A[0, 1)d)?

Definition
(S ,Φ) is spectral pair / Riesz spectral pair if E(Φ) =

{
e2πi⟨ ·ϕ⟩, ϕ ∈ Φ

}
is OB / Riesz basis of L2(S).

(S ,Φ) is tiling pair if
∑
ϕ∈Φ χS+ϕ = 1 a.e.

Theorem (Iosevich, Pedersen ’98; Lagarias, Reeds, Wang ’00)
([0, 1)d ,Φ) is a spectral pair if and only if it is a tiling pair.

Remark
(A[0, 1)d ,Φ) spectral pair ⇐⇒ ([0, 1)d ,ATΦ) spectral pair ⇐⇒ ([0, 1)d ,ATΦ) tiling pair

Question rephrased
For which full rank A exists Φ ⊆ AZd with ([0, 1)d ,Φ) is a tiling pair.
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First results

Theorem (Lee, GP, Walnut 24+)
For a full rank A exists a lattice Λ ⊆ AZd with ([0, 1)d ,Λ) is a tiling pair if and only if
AZd = GR−1Zd with G unitriangular and R ∈ Zd×d .

For a tiling pair ([0, 1)d ,Ψ) and v ∈ Zd let ψv ∈ Ψ be the unique vector satisfying v ∈ [0, 1)d + ψv .

Theorem (Lee, GP, Walnut 24+)
For d ≤ 7 and a tiling pair ([0, 1)d ,Ψ) with ψ(0,...,0) = (0, . . . , 0), exist

v1, . . . , vd ,w1, . . . ,wd ∈ {0, 1}d such that(
[0, 1)d , (ψv1 − ψw1)Z+ . . .+ (ψvd − ψwd

)Z
)

is a tiling pair.

Theorem (Lee, GP, Walnut 24+)
For d ≤ 7 and a full rank A exists a set Φ ⊆ AZd with ([0, 1)d ,Φ) is a tiling pair if and only if
AZd = GR−1Zd with G unitriangular and R ∈ Zd×d .

Theorem (Kolountzakis 24+)
Φ ⊆ AZd with ([0, 1)d ,Φ) is a tiling implies detA = 1/N.
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Why 7?

Definition

Two cubes [0, 1)d + φ1 and [0, 1)d + φ2 of a cube
tiling ([0, 1)d ,Φ) are twins if they share a face.

Theorem (Minkowski conjectured 1907; Hajos confirmed 1942)

Every lattice Λ in Rd with ([0, 1)d ,Λ) is a cube tiling has a twin pair.

Theorem (Keller conjectured 1930; Perron confirmed for d ≤ 6, 1940; Lagarias & Shor gave
counterexample for d = 10, 1992; last open case d = 7 settled by computer algebra in 2020)

Every set Φ in Rd with ([0, 1)d ,Φ) is a cube tiling has a twin pair if and only if d ≤ 7.
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