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For which parallelipiped A[0,1]¢ C RY exists W C Z? so that {€*""¥"*},,cy is an orthogonal basis for
L2(A[0, 1]9)?
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THEOREM (Seip '95) ‘
There exists A C Z with £(A) = {e*™**} ¢ is a Riesz basis for L2[0, a].
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THEOREM B (GP, Shauna Revay, David Walnut '24)

For by, ..., b, > 0 with ZJ'-’:I bj =1 exists a partition Ay,...,A, of Z so that for any J C {1,...,n} we
have f(UJEJ A;) is a Riesz basis for L?(/) where [ is an interval of length > jes b
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BEATTY SEQUENCES
o . k k .
For a, b irrational with a+ b =1, the sets A = { {;J }keN and B = {{BJ }keN partition N.
Proof.  There exist |aN| elements from A in [0, N) and |bN| elements from B in [0, N).
a,b ¢ Q implies
aN —1< |aN]| <aN, and bN —1< [bN] < bN andin sum

N—2=aN—1+bN—1<|aN|+ |[bN] < aN+ bN = N.

So both sequences together drop 1 element in [0,2), so onto 1, an additional integer into [0, 3), so
onto 2, ...
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THEOREM (Kozman, Nitzan 2015)
For any finite union of intervals S C [0, 1] exists A C Z such that E(A) is a Riesz basis for L?(S).
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If ¢1,dh,-..,cCn,d, are linearly independent over Q, then exist Ag,...,A,, C Z with S(U A;) is Riesz of
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L2 [ U[aj_l,aj]} forall J C {1,...,n}.
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THEOREM (Caragea, Lee, Malikiosis, GP)

Let N = pq for p, q distinct primes, ¢ < 7, and 1, d1, ..., Cn, dn € {0, 4, ..., Y51, 1}, then the
conclusion above holds.
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PROOF IDEA OF THE RATIONAL RESULT

For N € N set o
_ 270 57 _ ke
Fn= ("N )ogungl = (w )ng,éngl’

For K,L C {0,1,..., N — 1} of equal cardinality

FnlK, L = (wkz)keK,zeL'

CHEBOTAREV’S THEOREM (1920s)
If N is prime, then, for any K, L of equal cardinality, det Fy[K, L] # 0.



N NOT PRIME

hence det F4 [{0,2},{0,2}] =0

hence det Fg [{0,2},{0,3}] =0
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N NOT PRIME

1 1 1 1
1 w w? WP
Fu = 1 ow? 1w hence det F4 [{0,2},{0,2}] =0
1 W W w
1 1 1 1 1 1
1 w w? W oW W
1 w2 w4 1 UJ2 W4
Fy— AT S hence det Fg [{0,2},{0,3}] =0
1 w* w2 1 w* w?
1 W W W W w

Conjectures

» If N is square-free, then all principal minors of Fy are non-zero. (Cabrelli, Molter, Negreira;
Caragea, Lee, Malikiosis, GP)

» If N contains no fourth power, then exists a permutation o so that det Fy[K, o(K)] # 0 for all K.



TESTING THE CONJECTURE

Square-free case

» Numerical and symbolical testing for small N (up to 45).

» Conjecture confirmed for square free 2p,3p,5p,6p,7p and gp for g > I, which is large.
(Loukaki; Caragea,Lee, Malikiosis, GP; Emmerich, Kunis)

» Smallest open cases 11-13=143,2-5.-7=70,2-3-5-7 = 210.

Non square-free case
» Initial numerical and symbolical testing for small N.
» No 'good’ permutations seem to exist for N = 16 = 2%,

» Next interesting case 3* = 81.



BACK TO HIERARCHICAL RIESZ BASES

6Z + o(0) 6Z + o(1) 6Z + o(2) 6Z + o(3) 6Z + o(4) 6Z + o(5)
0 1/6 2/6 3/6 4/6 5/6 1

[ | | | | | |
[ \ \ \ \ \ \

If det Fy[K, o(K)] # 0 for all K then the family of Riesz bases E(NZ + o(k)) of L2([%, 5] is
hierarchical.

Recall: o=identity works for square free 2p,3p,5p,6p, 7p and gp for g > ', which is large. (Loukaki;
Caragea,Lee, Malikiosis, GP; Emmerich, Kunis)
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CUBE TILINGS

QUESTION
For which full rank A exists ® C Zwith £(®) is orthogonal basis for L2(A[0,1)%)?

DEFINITION

(S, ®) is spectral pair / Riesz spectral pair if £(®) = {e>™¢"?) ¢ € ®} is OB / Riesz basis of L2(S).
(S, ) is tiling pair if 30,4 X519 =1 ae.

THEOREM (losevich, Pedersen '98; Lagarias, Reeds, Wang '00)

([0,1)4, ®) is a spectral pair if and only if it is a tiling pair.

REMARK
(A[0,1)9, ®) spectral pair <= ([0,1)9, AT ®) spectral pair < ([0,1)?, AT ®) tiling pair

QUESTION REPHRASED
For which full rank A exists & C AZ9 with ([0,1)?, ®) is a tiling pair.
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For a full rank A exists a lattice A C AZ? with ([0,1)9,A) is a tiling pair if and only if
AZ4 = GR™1Z9 with G unitriangular and R € Z9*¢.
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THEOREM (Lee, GP, Walnut 24T)
For a full rank A exists a lattice A C AZ? with ([0,1)9,A) is a tiling pair if and only if
AZ4 = GR™1Z9 with G unitriangular and R € Z9*¢.

For a tiling pair ([0,1), W) and v € Z9 let 1), € V be the unique vector satisfying v € [0,1)9 + 1), .

THEOREM (Lee, GP, Walnut 24T)
For d < 7 and a tiling pair ([0,1)9, W) with Y,....0) = (0,...,0), exist
Viyeoos Vs Wi, ..., Wy € {0,1}9 such that

(10,1), (v, — Yus)Z + ...+ (thy, — Yw,)Z) s a tiling pair.

THEOREM (Lee, GP, Walnut 24T)
For d <7 and a full rank A exists a set & C AZ? with ([0,1)9, ®) is a tiling pair if and only if
AZ4 = GR™1Z9 with G unitriangular and R € Z9*¢.

THEOREM (Kolountzakis 24%)
¢ C AZ? with ([0,1)9, ®) is a tiling implies det A = 1/N.
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Two cubes [0,1)¢ + ¢ and [0,1)? + ¢, of a cube
tiling ([0,1)?, ®) are twins if they share a face.
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DEFINITION E
Two cubes [0, l)d + 1 and [0, 1)d + 5 of a cube any | &
tiling ([0,1)?, ®) are twins if they share a face. < <

THEOREM  (Minkowski conjectured 1907; Hajos confirmed 1942)
Every lattice A in R with ([0,1)9,A) is a cube tiling has a twin pair.
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DEFINITION
Two cubes [0, l)d + 1 and [0, 1)d + ¢, of a cube ann | LS
tiling ([0,1)?, ®) are twins if they share a face. < <

THEOREM  (Minkowski conjectured 1907; Hajos confirmed 1942)

Every lattice A in R with ([0,1)9,A) is a cube tiling has a twin pair.

THEOREM (Keller conjectured 1930; Perron confirmed for d < 6, 1940; Lagarias & Shor gave
counterexample for d = 10, 1992; last open case d = 7 settled by computer algebra in 2020)
Every set ® in RY with ([0,1)9, ®) is a cube tiling has a twin pair if and only if d < 7.
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