

Cube tilings subject to lattice constraints & exponential bases with integer frequencies

Götz Pfander

Mathematical Institute for Machine Learning and Data Science Catholic University Eichstätt-Ingolstadt

Xian 17.9.2025

joint work with Andrei Caragea, Dae Gwan Lee, Romanos Malikiosis, Shauna Revay, David Walnut, Romanos Malikiosis For which parallelipiped $A[0,1]^d \subseteq \mathbb{R}^d$ exists $\Psi \subseteq \mathbb{Z}^d$ so that $\{e^{2\pi i \psi \cdot \mathbf{x}}\}_{\psi \in \Psi}$ is an orthogonal basis for $L^2(A[0,1]^d)$?

d=1

Only: $\{e^{2\pi i \psi \times}\}_{\psi \in \mathbb{N}\mathbb{Z}}$ is an orthogonal basis for $L^2[0, \frac{1}{N}]$, $\mathbb{N} \in \mathbb{N}$.

d=1

Only: $\{e^{2\pi i \psi x}\}_{\psi \in \mathbb{N}\mathbb{Z}}$ is an orthogonal basis for $L^2[0, \frac{1}{N}]$, $\mathbb{N} \in \mathbb{N}$.

THEOREM (Seip '95) There exists $\Lambda \subseteq \mathbb{Z}$ with $\mathcal{E}(\Lambda) = \{e^{2\pi i \lambda x}\}_{\lambda \in \Lambda}$ is a Riesz basis for $L^2[0, a]$.

PROLOGUE

Riesz Basis (RB)

$$\{g_n\}_{n\in\mathbb{Z}}$$
 is a RB for H if $\overline{\operatorname{span}\{g_n\}}=H$ and $\exists A,B>0$: $A\sum_n|a_n|^2\leq \|\sum_na_ng_n\|^2\leq B\sum_n|a_n|^2$, $\forall \{a_n\}$.

Riesz basis (RB)

$$\{g_n\}_{n\in\mathbb{Z}}$$
 is a RB for H if $\overline{\operatorname{span}\{g_n\}}=H$ and $\exists A,B>0$: $A\sum_n|a_n|^2\leq \|\sum_na_ng_n\|^2\leq B\sum_n|a_n|^2$, $\forall \{a_n\}$.

Fourier series

$$\mathcal{E}(\mathbb{Z}) = \{e^{2\pi i n x}\}_{n \in \mathbb{Z}} \text{ is ONB for } L^2[0,1] \quad \Rightarrow \quad \mathcal{E}(\frac{\mathbb{Z} + \alpha}{a}) = \{e^{2\pi i \frac{n + \alpha}{a} x}\}_{n \in \mathbb{Z}} \text{ is an OB for } L^2[b,b+a].$$

Riesz Basis (RB)

$$\{g_n\}_{n\in\mathbb{Z}}$$
 is a RB for H if $\overline{\operatorname{span}\{g_n\}}=H$ and $\exists A,B>0$: $A\sum_n|a_n|^2\leq \|\sum_na_ng_n\|^2\leq B\sum_n|a_n|^2$, $\forall \{a_n\}$.

Fourier series

$$\mathcal{E}(\mathbb{Z}) = \{e^{2\pi i n x}\}_{n \in \mathbb{Z}} \text{ is ONB for } L^2[0,1] \quad \Rightarrow \quad \mathcal{E}(\frac{\mathbb{Z}+\alpha}{a}) = \{e^{2\pi i \frac{n+\alpha}{a} x}\}_{n \in \mathbb{Z}} \text{ is an OB for } L^2[b,b+a].$$

MOTIVATING OBSERVATION FROM GRAD SCHOOL

0
$$\mathcal{E}(2\mathbb{Z})$$
 is OB of $L^2[0,\frac{1}{2}]$ $\frac{1}{2}$ $\mathcal{E}(2\mathbb{Z}+1)$ is OB of $L^2[\frac{1}{2},1]$ 1 $\mathcal{E}(\mathbb{Z})=\mathcal{E}((2\mathbb{Z}+1)\ \dot{\cup}\ 2\mathbb{Z})$ is ONB of $L^2[0,1]$

Riesz Basis (RB)

$$\{g_n\}_{n\in\mathbb{Z}}$$
 is a RB for H if $\overline{\operatorname{span}\{g_n\}}=H$ and $\exists A,B>0$: $A\sum_{n}|a_n|^2\leq \|\sum_{n}a_ng_n\|^2\leq B\sum_{n}|a_n|^2$, $\forall\{a_n\}$.

Fourier series

$$\mathcal{E}(\mathbb{Z}) = \{e^{2\pi i n x}\}_{n \in \mathbb{Z}} \text{ is ONB for } L^2[0,1] \quad \Rightarrow \quad \mathcal{E}(\frac{\mathbb{Z} + \alpha}{a}) = \{e^{2\pi i \frac{n + \alpha}{a} x}\}_{n \in \mathbb{Z}} \text{ is an OB for } L^2[b,b+a].$$

MOTIVATING OBSERVATION FROM GRAD SCHOOL

0
$$\mathcal{E}(2\mathbb{Z})$$
 is OB of $L^2[0,\frac{1}{2}]$ $\frac{1}{2}$ $\mathcal{E}(2\mathbb{Z}+1)$ is OB of $L^2[\frac{1}{2},1]$ 1 $\mathcal{E}(\mathbb{Z})=\mathcal{E}((2\mathbb{Z}+1)\;\dot{\cup}\;2\mathbb{Z})$ is ONB of $L^2[0,1]$

$$_{0}$$
 $\mathcal{E}(\Lambda)$ is RB of $L^{2}[0,a]$

Riesz Basis (RB)

$$\{g_n\}_{n\in\mathbb{Z}}$$
 is a RB for H if $\overline{\operatorname{span}\{g_n\}}=H$ and $\exists A,B>0$: $A\sum |a_n|^2\leq \|\sum a_ng_n\|^2\leq B\sum |a_n|^2$, $\forall \{a_n\}$.

Fourier series

$$\mathcal{E}(\mathbb{Z}) = \{e^{2\pi i n x}\}_{n \in \mathbb{Z}} \text{ is ONB for } L^2[0,1] \quad \Rightarrow \quad \mathcal{E}(\frac{\mathbb{Z} + \alpha}{a}) = \{e^{2\pi i \frac{n + \alpha}{a} x}\}_{n \in \mathbb{Z}} \text{ is an OB for } L^2[b,b+a].$$

MOTIVATING OBSERVATION FROM GRAD SCHOOL

0
$$\mathcal{E}(2\mathbb{Z})$$
 is OB of $L^2[0,\frac{1}{2}]$ $\frac{1}{2}$ $\mathcal{E}(2\mathbb{Z}+1)$ is OB of $L^2[\frac{1}{2},1]$ 1 $\mathcal{E}(\mathbb{Z})=\mathcal{E}((2\mathbb{Z}+1)\ \dot{\cup}\ 2\mathbb{Z})$ is ONB of $L^2[0,1]$

RESULTS

THEOREM A (GP, Shauna Revay, David Walnut '24)

For $0=a_0 < a_1 < \ldots < a_n=1$ exists a partition $\Lambda_1,\ldots,\Lambda_n$ of $\mathbb Z$ s.t. $\mathcal E(\Lambda_k)$ is a Riesz basis of $L^2[a_{k-1},a_k]$.

RESULTS

THEOREM A (GP, Shauna Revay, David Walnut '24)

For $0=a_0 < a_1 < \ldots < a_n=1$ exists a partition $\Lambda_1,\ldots,\Lambda_n$ of $\mathbb Z$ s.t. $\mathcal E(\Lambda_k)$ is a Riesz basis of $L^2[a_{k-1},a_k]$.

THEOREM B (GP, Shauna Revay, David Walnut '24)

For $b_1, \ldots, b_n > 0$ with $\sum_{j=1}^n b_j = 1$ exists a partition $\Lambda_1, \ldots, \Lambda_n$ of $\mathbb Z$ so that for any $J \subseteq \{1, \ldots, n\}$ we have $\mathcal E (\bigcup_{j \in J} \Lambda_j)$ is a Riesz basis for $L^2(I)$ where I is an **interval** of length $\sum_{j \in J} b_j$.

3 TOOLS

KADEC'S THEOREM

For $\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

For
$$\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$$
, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

Weyl Equidistribution Theorem For α irrational it holds

$$\lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} k \alpha \mod 1 = \frac{1}{2}$$

For
$$\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$$
, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

Weyl Equidistribution Theorem

For α irrational it holds

$$\lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} k \alpha \mod 1 = \frac{1}{2}$$

BEATTY SEQUENCES

For
$$a,b$$
 irrational with $a+b=1$, the sets $\mathcal{A}=\left\{\left\lfloor\frac{k}{a}\right\rfloor\right\}_{k\in\mathbb{N}}$ and $\mathcal{B}=\left\{\left\lfloor\frac{k}{b}\right\rfloor\right\}_{k\in\mathbb{N}}$ partition \mathbb{N} .

For
$$\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$$
, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

Weyl Equidistribution Theorem

For α irrational it holds

$$\lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} k \alpha \mod 1 = \frac{1}{2}$$

BEATTY SEQUENCES

For
$$a,b$$
 irrational with $a+b=1$, the sets $\mathcal{A}=\left\{\left\lfloor\frac{k}{a}\right\rfloor\right\}_{k\in\mathbb{N}}$ and $\mathcal{B}=\left\{\left\lfloor\frac{k}{b}\right\rfloor\right\}_{k\in\mathbb{N}}$ partition \mathbb{N} .

Proof. There exist $\lfloor aN \rfloor$ elements from \mathcal{A} in [0, N) and $\lfloor bN \rfloor$ elements from \mathcal{B} in [0, N).

For
$$\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$$
, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

WEYL EQUIDISTRIBUTION THEOREM

For α irrational it holds

$$\lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} k \alpha \mod 1 = \frac{1}{2}$$

BEATTY SEQUENCES

For
$$a, b$$
 irrational with $a + b = 1$, the sets $\mathcal{A} = \left\{ \left\lfloor \frac{k}{a} \right\rfloor \right\}_{k \in \mathbb{N}}$ and $\mathcal{B} = \left\{ \left\lfloor \frac{k}{b} \right\rfloor \right\}_{k \in \mathbb{N}}$ partition \mathbb{N} .

Proof. There exist $\lfloor aN \rfloor$ elements from \mathcal{A} in [0, N) and $\lfloor bN \rfloor$ elements from \mathcal{B} in [0, N). $a, b \notin \mathbb{Q}$ implies

$$aN-1 < \lfloor aN \rfloor < aN$$
, and $bN-1 < \lfloor bN \rfloor < bN$ and in sum $N-2 = aN-1 + bN-1 < \lfloor aN \rfloor + \lfloor bN \rfloor < aN + bN = N$.

For $\varphi: \frac{\mathbb{Z}+c}{a} \to \mathbb{R}$, $\mathcal{E}\left(\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}\varphi\right)$ is a Riesz basis for $L^2[0,a]$ if $\sup_{k\in\mathbb{Z}}\left|\frac{k+\alpha}{a}-\varphi\left(\frac{k+\alpha}{a}\right)\right|<\frac{1}{4a}$.

WEYL EQUIDISTRIBUTION THEOREM

For α irrational it holds

$$\lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} k \alpha \mod 1 = \frac{1}{2}$$

BEATTY SEQUENCES

For
$$a, b$$
 irrational with $a + b = 1$, the sets $\mathcal{A} = \left\{ \left\lfloor \frac{k}{a} \right\rfloor \right\}_{k \in \mathbb{N}}$ and $\mathcal{B} = \left\{ \left\lfloor \frac{k}{b} \right\rfloor \right\}_{k \in \mathbb{N}}$ partition \mathbb{N} .

Proof. There exist $\lfloor aN \rfloor$ elements from \mathcal{A} in [0, N) and $\lfloor bN \rfloor$ elements from \mathcal{B} in [0, N). $a, b \notin \mathbb{Q}$ implies

$$aN-1 < \lfloor aN \rfloor < aN, \quad ext{and} \quad bN-1 < \lfloor bN \rfloor < bN \quad ext{and in sum}$$

$$N-2 = aN-1 + bN-1 < |aN| + |bN| < aN + bN = N.$$

So both sequences together drop 1 element in [0,2), so onto 1, an additional integer into [0,3), so onto 2, ...

AVDONIN'S THEOREM (Kadec
$$\frac{1}{4}$$
-Theorem for $R=1$)

For $\varphi: \frac{\mathbb{Z}+\alpha}{2} \to \mathbb{R}$ injective with separated range, $\mathcal{E}\{\varphi(\frac{k+\alpha}{2})\}$ is a Riesz basis for $L^2[0,a]$ if for R>0,

$$\frac{1}{4a} > \sup_{m \in \mathbb{Z}} \left| \frac{1}{R} \sum_{k \in [mR, (m+1)R)} \frac{k+\alpha}{a} - \varphi\left(\frac{k+\alpha}{a}\right) \right|.$$

AVDONIN'S THEOREM (Kadec $\frac{1}{4}$ -Theorem for R=1) $PROOF \overset{0}{\longleftarrow} \overset{a\notin \mathbb{Q}}{\longleftarrow} \overset{1}{\longleftarrow}$ For $\varphi: \frac{\mathbb{Z}+\alpha}{a} \to \mathbb{R}$ injective with separated range, $\mathcal{E}\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}$ is a Riesz basis for $L^2[0,a]$ if for R>0,

$$\frac{1}{4a} > \sup_{m \in \mathbb{Z}} \left| \frac{1}{R} \sum_{k \in [mR, (m+1)R)} \frac{k + \alpha}{a} - \varphi\left(\frac{k + \alpha}{a}\right) \right|.$$

Weyl-Khinchin Equidistribution Theorem For a irrational and $\epsilon>0$ exists R so that for all $m\in\mathbb{Z}$,

$$\epsilon > \left| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} \mod 1 - \frac{1}{2} \right|$$

 $\begin{array}{ll} \text{AVDONIN'S THEOREM} & \text{(Kadec $\frac{1}{4}$-Theorem for R=1)} & PROOF & \stackrel{0}{\longmapsto} & \stackrel{a\notin\mathbb{Q}}{\longmapsto} & 1 \\ \text{For $\varphi:\frac{\mathbb{Z}+\alpha}{a}\to\mathbb{R}$ injective with separated range, $\mathcal{E}\big\{\varphi\big(\frac{k+\alpha}{a}\big)\big\}$ is a Riesz basis for $L^2[0,a]$ if for $R>0$,} \end{array}$

$$\frac{1}{4a} > \sup_{m \in \mathbb{Z}} \left| \frac{1}{R} \sum_{k \in [mR, (m+1)R)} \frac{k+\alpha}{a} - \varphi\left(\frac{k+\alpha}{a}\right) \right|.$$

WEYL-KHINCHIN EQUIDISTRIBUTION THEOREM For a irrational and $\epsilon > 0$ exists R so that for all $m \in \mathbb{Z}$,

$$\epsilon > \left| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} \mod 1 - \frac{1}{2} \right|$$

$$= \left| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} - \left\lfloor \frac{k + \frac{1}{2}}{a} \right\rfloor_{\mathbb{Z}} - \frac{1}{2} \right|$$

AVDONIN'S THEOREM (Kadec $\frac{1}{4}$ -Theorem for R=1) PROOF $\stackrel{0}{\vdash} \stackrel{a\notin \mathbb{Q}}{\vdash} \stackrel{1}{\vdash}$ For $\varphi: \frac{\mathbb{Z}+\alpha}{2} \to \mathbb{R}$ injective with separated range, $\mathcal{E}\{\varphi(\frac{k+\alpha}{2})\}$ is a Riesz basis for $L^2[0,a]$ if for R>0,

$$\frac{1}{4a} > \sup_{m \in \mathbb{Z}} \left| \frac{1}{R} \sum_{k \in [mR \ (m+1)R)} \frac{k+\alpha}{a} - \varphi\left(\frac{k+\alpha}{a}\right) \right|.$$

WEYL-KHINCHIN EQUIDISTRIBUTION THEOREM For a irrational and $\epsilon > 0$ exists R so that for all $m \in \mathbb{Z}$,

$$\begin{aligned} \epsilon > \Big| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} \mod 1 & -\frac{1}{2} \Big| \\ &= \Big| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} - \Big\lfloor \frac{k + \frac{1}{2}}{a} \Big\rfloor_{\mathbb{Z}} & -\frac{1}{2} \Big| = \Big| \frac{1}{R} \sum_{k=mR}^{(m+1)N-1} \frac{k + \frac{1}{2}}{a} - \Big\lfloor \frac{k + \frac{1}{2}}{a} \Big\rfloor_{\mathbb{Z} + \frac{1}{2}} \Big|. \end{aligned}$$

SEIP'S THEOREM

There exists $\Lambda \subseteq \mathbb{Z}$ such that $\mathcal{E}(\Lambda)$ is a Riesz basis for $L^2[0,a]$, $0 < a \leq 1$.

AVDONIN'S THEOREM (Kadec $\frac{1}{4}$ -Theorem for R=1) $PROOF \overset{0}{\longleftarrow} \overset{a\notin \mathbb{Q}}{\longleftarrow} \overset{1}{\longleftarrow}$ For $\varphi: \frac{\mathbb{Z}+\alpha}{a} \to \mathbb{R}$ injective with separated range, $\mathcal{E}\left\{\varphi\left(\frac{k+\alpha}{a}\right)\right\}$ is a Riesz basis for $L^2[0,a]$ if for R>0,

$$\frac{1}{4a} > \sup_{m \in \mathbb{Z}} \left| \frac{1}{R} \sum_{k \in [mR, (m+1)R)} \frac{k + \alpha}{a} - \varphi\left(\frac{k + \alpha}{a}\right) \right|.$$

WEYL-KHINCHIN EQUIDISTRIBUTION THEOREM For a irrational and $\epsilon > 0$ exists R so that for all $m \in \mathbb{Z}$,

$$\epsilon > \left| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} \mod 1 - \frac{1}{2} \right|$$

$$= \left| \frac{1}{R} \sum_{k=mR}^{(m+1)R-1} \frac{k + \frac{1}{2}}{a} - \left\lfloor \frac{k + \frac{1}{2}}{a} \right\rfloor_{\mathbb{Z}} - \frac{1}{2} \right| = \left| \frac{1}{R} \sum_{k=mR}^{(m+1)N-1} \frac{k + \frac{1}{2}}{a} - \left\lfloor \frac{k + \frac{1}{2}}{a} \right\rfloor_{\mathbb{Z} + \frac{1}{2}} \right|.$$

Inhomogeneous Beatty sequences

For a irrational, the sets
$$\left\{\left[\frac{k+\frac{1}{2}}{a}\right]_{\mathbb{Z}+\frac{1}{2}}\right\}_{k\in\mathbb{Z}}$$
 and $\left\{\left[\frac{\ell+\frac{1}{2}}{1-a}\right]_{\mathbb{Z}+\frac{1}{2}}\right\}_{\ell\in\mathbb{Z}}$ partition $\mathbb{Z}+\frac{1}{2}$.

0	$1/\sqrt{2}$	1
	· 1	

TWO INTERVALS

TWO INTERVALS

0
$$a = 1/\sqrt{2}$$
 $1/\sqrt{2}$ $b = 1 - 1/\sqrt{2}$ 1 $\frac{\mathbb{Z} + \frac{1}{2}}{a} = \sqrt{2}\mathbb{Z} + \frac{1}{\sqrt{2}}$

THREE INTERVALS

THREE INTERVALS

$$\mathbb{Z}$$
 partitions into $\Lambda_1,...,\Lambda_n$ with $\mathcal{E}(\bigcup_{r=k}^\ell \Lambda_r)$ is a Riesz basis of $L^2[a_{k-1},a_\ell]=L^2\Big[\bigcup_{r=k}^\ell [a_{k-1},a_k]\Big]$ for all k,ℓ .

$$\mathbb{Z}$$
 partitions into $\Lambda_1,...,\Lambda_n$ with $\mathcal{E}(\bigcup_{r=k}^\ell \Lambda_r)$ is a Riesz basis of $L^2[a_{k-1},a_\ell]=L^2\Big[\bigcup_{r=k}^\ell [a_{k-1},a_k]\Big]$ for all k,ℓ .

$$\mathbb{Z}$$
 partitions into $\Lambda_1,...,\Lambda_n$ with $\mathcal{E}(\bigcup_{\ell}^{\ell}\Lambda_r)$ is a Riesz basis of $L^2[a_{k-1},a_{\ell}]=L^2\Big[\bigcup_{\ell}^{\ell}[a_{k-1},a_{k}]\Big]$ for all k,ℓ .

DEFINITION

A family of Riesz bases $\mathcal{E}(\Lambda_j)$ of $L^2(S_j)$ is called hierarchical if

$$\mathcal{E}(\bigcup_{j\in J}\Lambda_j)$$
 is a Riesz basis of $L^2\Big[\bigcup_{j\in J}[a_{j-1},a_j]\Big]$ for all $J\subseteq\{1,\ldots,n\}$.

$$\mathbb{Z}$$
 partitions into $\Lambda_1,...,\Lambda_n$ with $\mathcal{E}(\bigcup_{\ell}^{\ell}\Lambda_r)$ is a Riesz basis of $L^2[a_{k-1},a_{\ell}]=L^2\Big[\bigcup_{\ell}^{\ell}[a_{k-1},a_k]\Big]$ for all k,ℓ .

$$0$$
 d_1 d_2 d_3 d_4

DEFINITION

A family of Riesz bases $\mathcal{E}(\Lambda_i)$ of $L^2(S_i)$ is called hierarchical if

$$\mathcal{E}(\bigcup_{i\in J}\Lambda_j)$$
 is a Riesz basis of $L^2\Big[\bigcup_{i\in J}[a_{j-1},a_j]\Big]$ for all $J\subseteq\{1,\ldots,n\}$.

THEOREM (Kozman, Nitzan 2015)

For any finite union of intervals $S \subseteq [0,1]$ exists $\Lambda \subset \mathbb{Z}$ such that $E(\Lambda)$ is a Riesz basis for $L^2(S)$.

THEOREM (Caragea, Lee, 2022) If $c_1, d_1, \ldots, c_n, d_n$ are linearly independent over \mathbb{Q} , then exist $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{Z}$ with $\mathcal{E}(\bigcup_{j \in J} \Lambda_j)$ is Riesz of

$$L^2\Big[igcup_{j\in J}[a_{j-1},a_j]\Big]$$
 for all $J\subseteq\{1,\ldots,n\}.$

.

コト 4回 ト 4 重 ト 4 重 ト 9 9 (で

Theorem (Caragea, Lee, 2022)

If $c_1, d_1, \ldots, c_n, d_n$ are linearly independent over \mathbb{Q} , then exist $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{Z}$ with $\mathcal{E}(\bigcup \Lambda_j)$ is Riesz of

$$L^2\Big[igcup_{j\in J}[a_{j-1},a_j]\Big]$$
 for all $J\subseteq\{1,\ldots,n\}.$

(Caragea, Lee, Malikiosis, GP)

Let N=pq for p,q distinct primes, $q\leq 7$, and $c_1,d_1,\ldots,c_n,d_n\in\{0,\frac{1}{N},\ldots,\frac{N-1}{N},1\}$, then the

conclusion above holds.

PROOF IDEA OF THE RATIONAL RESULT

For $N \in \mathbb{N}$ set

$$\mathcal{F}_{N} = \left(e^{2\pi i \frac{k\ell}{N}}\right)_{0 \leq k,\ell \leq N-1} = \left(\omega^{k\ell}\right)_{0 \leq k,\ell \leq N-1}, \quad \omega = e^{-2\pi i \frac{1}{N}}$$

For $K, L \subset \{0, 1, ..., N-1\}$ of equal cardinality

$$\mathcal{F}_{N}[K,L] = (\omega^{k\ell})_{k \in K, \ell \in L}.$$

PROOF IDEA OF THE RATIONAL RESULT

For $N \in \mathbb{N}$ set

$$\mathcal{F}_{\mathsf{N}} = \left(e^{2\pi i \frac{k\ell}{N}}\right)_{0 < k,\ell < N-1} = \left(\omega^{k\ell}\right)_{0 < k,\ell < N-1}, \quad \omega = e^{-2\pi i \frac{1}{N}}$$

For $K, L \subset \{0, 1, \dots, N-1\}$ of equal cardinality

$$\mathcal{F}_N[K,L] = (\omega^{k\ell})_{k \in K, \ell \in L}.$$

Chebotarëv's theorem (1920s)

If N is prime, then, for any K, L of equal cardinality, $\det \mathcal{F}_N[K, L] \neq 0$.

N NOT PRIME

$$\mathcal{F}_{4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} \\ 1 & \omega^{2} & 1 & \omega^{2} \\ 1 & \omega^{3} & \omega^{2} & \omega \end{pmatrix} \text{ hence } \det F_{4}\left[\{0,2\},\{0,2\}\right] = 0$$

$$\mathcal{F}_{6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} \\ 1 & \omega^{2} & \omega^{4} & 1 & \omega^{2} & \omega^{4} \\ 1 & \omega^{3} & 1 & \omega^{3} & 1 & \omega^{3} \\ 1 & \omega^{4} & \omega^{2} & 1 & \omega^{4} & \omega^{2} \\ 1 & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega \end{pmatrix} \text{ hence } \det F_{6}\left[\{0,2\},\{0,3\}\right] = 0$$

N NOT PRIME

$$\mathcal{F}_{4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} \\ 1 & \omega^{2} & 1 & \omega^{2} \\ 1 & \omega^{3} & \omega^{2} & \omega \end{pmatrix} \text{ hence } \det F_{4}\left[\{0,2\},\{0,2\}\right] = 0$$

$$\mathcal{F}_{6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} \\ 1 & \omega^{2} & \omega^{4} & 1 & \omega^{2} & \omega^{4} \\ 1 & \omega^{3} & 1 & \omega^{3} & 1 & \omega^{3} \\ 1 & \omega^{4} & \omega^{2} & 1 & \omega^{4} & \omega^{2} \\ 1 & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega \end{pmatrix} \text{ hence } \det F_{6}\left[\{0,2\},\{0,3\}\right] = 0$$

Conjectures

- ▶ If N is square-free, then all principal minors of \mathcal{F}_N are non-zero. (Cabrelli, Molter, Negreira; Caragea, Lee, Malikiosis, GP)
- ▶ If N contains no fourth power, then exists a permutation σ so that $\det \mathcal{F}_N[K, \sigma(K)] \neq 0$ for all K.

TESTING THE CONJECTURE

Square-free case

- ightharpoonup Numerical and symbolical testing for small N (up to 45).
- ► Conjecture confirmed for square free 2p, 3p, 5p, 6p, 7p and qp for $q > \Gamma_p$ which is large. (Loukaki; Caragea,Lee, Malikiosis, GP; Emmerich, Kunis)
- ► Smallest open cases $11 \cdot 13 = 143$, $2 \cdot 5 \cdot 7 = 70$, $2 \cdot 3 \cdot 5 \cdot 7 = 210$.

Non square-free case

- ► Initial numerical and symbolical testing for small *N*.
- ▶ No 'good' permutations seem to exist for $N = 16 = 2^4$.
- ▶ Next interesting case $3^4 = 81$.

BACK TO HIERARCHICAL RIESZ BASES

If det $\mathcal{F}_N[K, \sigma(K)] \neq 0$ for all K then the family of Riesz bases $\mathcal{E}(N\mathbb{Z} + \sigma(k))$ of $L^2([\frac{k}{N}, \frac{k+1}{N}])$ is hierarchical.

Recall: σ =identity works for square free 2p, 3p, 5p, 6p, 7p and qp for $q > \Gamma_p$ which is large. (Loukaki; Caragea, Lee, Malikiosis, GP; Emmerich, Kunis)

Generalizations d = 2

QUESTION

For which full rank A exists $\Phi \subseteq \mathbb{Z}^d$ with $\mathcal{E}(\Phi)$ is orthogonal basis for $L^2(A[0,1)^d)$?

QUESTION

For which full rank A exists $\Phi \subseteq \mathbb{Z}^d$ with $\mathcal{E}(\Phi)$ is orthogonal basis for $L^2(A[0,1)^d)$?

DEFINITION

 (S,Φ) is spectral pair / Riesz spectral pair if $\mathcal{E}(\Phi)=\left\{e^{2\pi i \langle \cdot \, \phi \rangle}, \ \phi \in \Phi\right\}$ is OB / Riesz basis of $L^2(S)$. (S,Φ) is tiling pair if $\sum_{\phi \in \Phi} \chi_{S+\phi}=1$ a.e.

QUESTION

For which full rank A exists $\Phi \subseteq \mathbb{Z}^d$ with $\mathcal{E}(\Phi)$ is orthogonal basis for $L^2(A[0,1)^d)$?

DEFINITION

 (S,Φ) is spectral pair / Riesz spectral pair if $\mathcal{E}(\Phi)=\left\{e^{2\pi i \langle \cdot \phi \rangle}, \ \phi \in \Phi\right\}$ is OB / Riesz basis of $L^2(S)$. (S,Φ) is tiling pair if $\sum_{\phi \in \Phi} \chi_{S+\phi}=1$ a.e.

THEOREM (losevich, Pedersen '98; Lagarias, Reeds, Wang '00) $([0,1)^d,\Phi)$ is a spectral pair if and only if it is a tiling pair.

QUESTION

For which full rank A exists $\Phi \subseteq \mathbb{Z}^d$ with $\mathcal{E}(\Phi)$ is orthogonal basis for $L^2(A[0,1)^d)$?

DEFINITION

$$(S,\Phi)$$
 is spectral pair / Riesz spectral pair if $\mathcal{E}(\Phi) = \left\{e^{2\pi i \langle \cdot \phi \rangle}, \ \phi \in \Phi\right\}$ is OB / Riesz basis of $L^2(S)$. (S,Φ) is tiling pair if $\sum_{\phi \in \Phi} \chi_{S+\phi} = 1$ a.e.

THEOREM (losevich, Pedersen '98; Lagarias, Reeds, Wang '00) $([0,1)^d, \Phi)$ is a spectral pair if and only if it is a tiling pair.

Remark

 $(A[0,1)^d,\Phi)$ spectral pair \iff $([0,1)^d,A^T\Phi)$ spectral pair \iff $([0,1)^d,A^T\Phi)$ tiling pair

QUESTION

For which full rank A exists $\Phi \subseteq \mathbb{Z}^d$ with $\mathcal{E}(\Phi)$ is orthogonal basis for $L^2(A[0,1)^d)$?

DEFINITION

$$(S,\Phi)$$
 is spectral pair / Riesz spectral pair if $\mathcal{E}(\Phi) = \{e^{2\pi i \langle \cdot \phi \rangle}, \ \phi \in \Phi\}$ is OB / Riesz basis of $L^2(S)$. (S,Φ) is tiling pair if $\sum_{\phi \in \Phi} \chi_{S+\phi} = 1$ a.e.

THEOREM (losevich, Pedersen '98; Lagarias, Reeds, Wang '00) $([0,1)^d, \Phi)$ is a spectral pair if and only if it is a tiling pair.

Remark

$$(A[0,1)^d,\Phi) \text{ spectral pair} \Longleftrightarrow ([0,1)^d,A^T\Phi) \text{ spectral pair} \Longleftrightarrow ([0,1)^d,A^T\Phi) \text{ tiling pair}$$

QUESTION REPHRASED

For which full rank A exists $\Phi \subseteq A\mathbb{Z}^d$ with $([0,1)^d, \Phi)$ is a tiling pair.

THEOREM (Lee, GP, Walnut 24⁺) For a full rank A exists a **lattice** $\Lambda \subseteq A\mathbb{Z}^d$ with $([0,1)^d,\Lambda)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

THEOREM (Lee, GP, Walnut 24⁺) For a full rank A exists a **lattice** $\Lambda \subseteq A\mathbb{Z}^d$ with $([0,1)^d,\Lambda)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

For a tiling pair $([0,1)^d, \Psi)$ and $v \in \mathbb{Z}^d$ let $\psi_v \in \Psi$ be the unique vector satisfying $v \in [0,1)^d + \psi_v$.

THEOREM (Lee, GP, Walnut 24⁺) For a full rank A exists a **lattice** $\Lambda \subseteq A\mathbb{Z}^d$ with $([0,1)^d,\Lambda)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

For a tiling pair $([0,1)^d, \Psi)$ and $v \in \mathbb{Z}^d$ let $\psi_v \in \Psi$ be the unique vector satisfying $v \in [0,1)^d + \psi_v$.

THEOREM (Lee, GP, Walnut 24⁺) For $d \le 7$ and a tiling pair ([0,1)^d, Ψ) with $\psi_{(0,...,0)} = (0,...,0)$, exist $v_1,...,v_d,w_1,...,w_d \in \{0,1\}^d$ such that

$$\left([0,1)^d,(\psi_{\mathsf{v}_1}-\psi_{\mathsf{w}_1})\mathbb{Z}+\ldots+(\psi_{\mathsf{v}_d}-\psi_{\mathsf{w}_d})\mathbb{Z}\right)\quad\text{is a tiling pair}.$$

THEOREM (Lee, GP, Walnut 24⁺) For a full rank A exists a **lattice** $\Lambda \subseteq A\mathbb{Z}^d$ with $([0,1)^d,\Lambda)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

For a tiling pair $([0,1)^d,\Psi)$ and $v\in\mathbb{Z}^d$ let $\psi_v\in\Psi$ be the unique vector satisfying $v\in[0,1)^d+\psi_v$.

THEOREM (Lee, GP, Walnut 24⁺) For $d \leq 7$ and a tiling pair ([0,1)^d, Ψ) with $\psi_{(0,...,0)} = (0,...,0)$, exist $v_1,\ldots,v_d,w_1,\ldots,w_d \in \{0,1\}^d$ such that

$$([0,1)^d,(\psi_{v_1}-\psi_{w_1})\mathbb{Z}+\ldots+(\psi_{v_d}-\psi_{w_d})\mathbb{Z})$$
 is a tiling pair.

THEOREM (Lee, GP, Walnut 24⁺)

For $d \leq 7$ and a full rank A exists a set $\Phi \subseteq A\mathbb{Z}^d$ with $([0,1)^d, \Phi)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

THEOREM (Lee, GP, Walnut 24⁺) For a full rank A exists a **lattice** $\Lambda \subseteq A\mathbb{Z}^d$ with $([0,1)^d,\Lambda)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

For a tiling pair $([0,1)^d, \Psi)$ and $v \in \mathbb{Z}^d$ let $\psi_v \in \Psi$ be the unique vector satisfying $v \in [0,1)^d + \psi_v$.

THEOREM (Lee, GP, Walnut 24⁺) For $d \le 7$ and a tiling pair ([0,1)^d, Ψ) with $\psi_{(0,...,0)} = (0,...,0)$, exist $v_1,...,v_d,w_1,...,w_d \in \{0,1\}^d$ such that

$$\left([0,1)^d,(\psi_{\mathsf{v}_1}-\psi_{\mathsf{w}_1})\mathbb{Z}+\ldots+(\psi_{\mathsf{v}_d}-\psi_{\mathsf{w}_d})\mathbb{Z}\right)\quad\text{is a tiling pair}.$$

THEOREM (Lee, GP, Walnut 24⁺) For $d \le 7$ and a full rank A exists a **set** $\Phi \subseteq A\mathbb{Z}^d$ with $([0,1)^d, \Phi)$ is a tiling pair if and only if $A\mathbb{Z}^d = GR^{-1}\mathbb{Z}^d$ with G unitriangular and $R \in \mathbb{Z}^{d \times d}$.

THEOREM (Kolountzakis 24⁺) $\Phi \subseteq A\mathbb{Z}^d$ with ([0,1)^d, Φ) is a tiling implies det A=1/N.

Why 7?

Why 7?

DEFINITION

Two cubes $[0,1)^d + \varphi_1$ and $[0,1)^d + \varphi_2$ of a cube tiling $([0,1)^d, \Phi)$ are twins if they share a face.

Why 7?

DEFINITION

Two cubes $[0,1)^d + \varphi_1$ and $[0,1)^d + \varphi_2$ of a cube tiling $([0,1)^d,\Phi)$ are twins if they share a face.

THEOREM (Minkowski conjectured 1907; Hajos confirmed 1942) Every lattice Λ in \mathbb{R}^d with $([0,1)^d,\Lambda)$ is a cube tiling has a twin pair.

Why 7^{9}

DEFINITION

Two cubes $[0,1)^d + \varphi_1$ and $[0,1)^d + \varphi_2$ of a cube tiling $([0,1)^d,\Phi)$ are twins if they share a face.

THEOREM (Minkowski conjectured 1907; Hajos confirmed 1942) Every lattice Λ in \mathbb{R}^d with $([0,1)^d,\Lambda)$ is a cube tiling has a twin pair.

THEOREM (Keller conjectured 1930; Perron confirmed for $d \le 6$, 1940; Lagarias & Shor gave counterexample for d=10, 1992; last open case d=7 settled by computer algebra in 2020) Every set Φ in \mathbb{R}^d with $([0,1)^d,\Phi)$ is a cube tiling has a twin pair if and only if $d \le 7$.

 e_3^{\perp}